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Introduction

Context

* Exponential growth of textual documents on the web, e.g. the PUBMED
database contains more than 20 millions of biomedical articles

* It is become more laborious to access what we are looking for

> We need automated Text Mining tools to help us understand, interpret
and organize this vast amount of information
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* Exponential growth of textual documents on the web, e.g. the PUBMED
database contains more than 20 millions of biomedical articles

* It is become more laborious to access what we are looking for
> We need automated Text Mining tools to help us understand, interpret

and organize this vast amount of information
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Motivations

Document Clustering :
+ A widely used unsupervised learning technique, to group together
similar documents based on their content
+ Documents within a cluster are semantically coherent or deal with the
same topics

. > Q
Figure: Example of document clustering on CLASSIC3 corpus
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Motivations

Document Clustering :
+ A widely used unsupervised learning technique, to group together
similar documents based on their content
+ Documents within a cluster are semantically coherent or deal with the
same topics

Figure: Example of document clustering on CLASSIC3 corpus ’
Advantages :
- Organization of documents, efficient browsing and navigation of huge
text corpora, speed up search engines, etc.
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Motivations

Document Clustering :
+ A widely used unsupervised learning technique, to group together
similar documents based on their content
+ Documents within a cluster are semantically coherent or deal with the
same topics

Figure: Example of document clustering on CLASSIC3 corpus ’
Advantages :
- Organization of documents, efficient browsing and navigation of huge
text corpora, speed up search engines, etc.
Challenges :
* High dimensionality
+ Sparsity
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Co-clustering

Co-clustering
* It is an important extension of traditional one-sided clustering, that addresses the
problem of simultaneous clustering of both dimensions of data matrices Hartigan,
1972
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Co-clustering
* It is an important extension of traditional one-sided clustering, that addresses the
problem of simultaneous clustering of both dimensions of data matrices Hartigan,
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Co-clustering

* It is an important extension of traditional one-sided clustering, that addresses the

problem of simultaneous clustering of both dimensions of data matrices Hartigan,

1972
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* It is an important extension of traditional one-sided clustering, that addresses the

problem of simultaneous clustering of both dimensions of data matrices Hartigan,
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Why Co-clustering?

> Exploit the duality between object space and attribute space

* Cluster Characterization

* Technique for dimensionality reduction

* Reduce Computation time
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(a) Original Data

Motivations

* When dealing with high dimensional sparse data, several co-clusters are primarily composed
of zeros.

* Seeking homogeneous blocks is not sufficient to produce meaningful results.
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: A4
(a) Original Data

Motivations
* When dealing with high dimensional sparse data, several co-clusters are primarily composed
of zeros.
* Seeking homogeneous blocks is not sufficient to produce meaningful results.

* Seeking diagonal structure turns out to be more beneficial.
* In good agreement with sparsity
* Produces directly the most relevant co-clusters and ignore noisy ones
* Cluster hypothesis
* Allows a direct interpretation of co-clusters
* Parsimonious

1400048l

() Diagonal co-clustering
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Introduction

(0]

Motivations

(b) General co-clustering

Motivations
* When dealing with high dimensional sparse data, several co-clusters are primarily composed
of zeros.
* Seeking homogeneous blocks is not sufficient to produce meaningful results.
* Seeking diagonal structure turns out to be more beneficial.

* In good agreement with sparsity
* Produces directly the most relevant co-clusters and ignore noisy ones

* Cluster hypothesis
* Allows a direct interpretation of co-clusters
* Parsimonious
Contributions
* Graph-based block diagonal clustering
* Model-based block diagonal clustering

11/66
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Graph-based Co-clustering

lustering

Contributions

Motivations

- Existing graph-based Co-clustering approaches use a spectral relaxation
of the discrete optimization problem
+ Find minimum cut using spectral relaxation (Dhillon, 2001)
+ Find maximum Modularity using spectral relaxation (Labiod and Nadif, 2011)
- Eigen vector computation may be prohibitive when dealing with high
dimensional matrices
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Contributions

Motivations

- Existing graph-based Co-clustering approaches use a spectral relaxation
of the discrete optimization problem

+ Find minimum cut using spectral relaxation (Dhillon, 2001)
+ Find maximum Modularity using spectral relaxation (Labiod and Nadif, 2011)

+ Eigen vector computation may be prohibitive when dealing with high
dimensional matrices
Contributions

+ We propose a new block-diagonal clustering algorithm (Coclus) (Ailem,
Role, and Nadif, 2015; Ailem, Role, and Nadif, 2016)

+ Coclus is based on the direct maximization of graph modularity
* Use an iterative alternating optimization procedure

M. Ailem, F. Role, and M. Nadif (2015). “Co-clustering Document-term Matrices by Direct
Maximization of Graph Modularity”. [n: C/IKM2015. ACM, pp. 1807-1810.

M. Ailem, F. Role, and M. Nadif (2016). “Graph modularity maximization as an effective method
for co-clustering text data”. In: Knowledge-Based Systems Journal 109, pp. 160-173.
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Graph-based Co-clustering Graph Modularity

for Co-clustering

Graph Modularity

~ * Introduced by Newman and Girvan (2004)
\ * Identify community structure in graphs
\\ \ * Measure the strength of the community structure of a graph
< 4

* Maximize the difference between the original graph and its
corresponding random version

* O=(number of intra-cluster edges) - (expected number of edges)

Given the graph G(V,E) and its corresponding adjacency matrix A :
ai.aj
A,C - , 1

o 2|E| ;ﬂzl( v = g ) (1)
* where |E| represents the number of edges
* a;» = 1 if there is an edge between nodes i and i/
* a;, and ay the degree of nodes i and i’ respectively, and

expected number of edges between nodes i and i’

* ¢ = Y zizire 1S equal to 1 if i and i belong to the same community &

4. a1,

2IE|

represents the

15/66
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Graph-based Co-clustering

Graph Modularity
Modularity for Co-clustering
Experiments

Modularity for Co-clustering

Given a rectangular positive matrix A,
modularity can be reformulated as follows
in the co-clustering context:

. -
a.j [
(A C) = Zz(a’! a )C’:/" (2) E NSO
.a 2 -
s 3 EEEEEE
¢ s 8 PRRESS
1 n
0(AZW) = — S>3 > (@ - = )z, (3) 2[0[1]o]1]o
a.. i=1j=1k=1 a. o|1|2(0|0|0
where a_ = ¥, ;a; = |E| is the number of 1|1jojojojo
edges (or edge weights for weighted « 000 [SNICNN
graphs) and ¢;; = ¥ zgwjx = 1 if nodes i and i 1/0/0|3]1/0
Jj belong to the same co-cluster k and 0 g olojojo|1]1
otherwise g
o

0(A,C) = aiTrace[(A -8)"ZW'] = Q(A,ZW"). (4)




Graph-based Co-clustering Graph Modularity

Modularity for Co-clustering
Experiments

Alternated Maximization of Modularity

Proposition

Let A be a (n x d) positive data matrix and C be a (n x d) matrix defining a
block seriation, the modularity measure Q(A, C) can be rewritten as

1) 0(A,C) = ai Z Zgj(aXX _adl £ )z = aiTmce[(AW -6™yz] = 0(AV,2)

- i=1 k=1

where 6% := {5,k—a’ak i=1,...,m5k=1 ,...,g}WIthak-Z 1 Wikd j

a

g & al% VA z
2) 0(A,C) - aizz( ,“ Yo = aiTrace[(A _ 6%)W] = Q(A%, W)

- =1 k=1

where 6% := {§}; = % 4 ,J—l codik=1,...,¢g} witha? =Y zaa:.
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Graph-based Co-clustering

Coclus Algorithm

Algorithm 1: Coclus

Input : positive data matrix A, number of co-clusters g
Step 1. Initialization of W

repeat

Step 2. Compute AW = AW

Step 3. Compute Z maximizing Q(AW,Z) by

w_aia% )
zik = argmax | a;, — = |Vi=1,...,mk=1,...,8
I<l<g a..

Step 4. Compute AZ = Z'A
Step 5. Compute W maximizing Q(A%, W) by

7 aaiy,,.
wjk:arlg;znax ag; = a‘ Vi=1,...,d;k=1,...,8
<t<g .

Step 6. Compute Q(A,ZW')
until Convergence;
Output : partition matrices Z and W, and modularity value Q

Complexity : O(nz-it-g)
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Experiments

Datasets Characteristics
#Documents _ #Words _ #Clusters _ Sparsity (%) _ Balance ¢ Evaluation measure : Accuracy (Acc) and
CLASSIC4 7095 5896 4 99.41 0.323 Normalized mutual information (NMI) (Strehl and
NG20 19949 43586 20 99.99 0.991 Ghosh, 2003)
SPORTS 8580 14870 7 99.99 0.036
REVIEWS 4069 18483 5 99.99 0.098 ¢ Data Types : binary, contingency and TF-IDF
Method | Data Type References Co-clustering | Type of i itation
Spec Positive data | (I. Dhillon, 2001) Diagonal Scickit Learn
Block Binary (Li, 2005) Diagonal Our python implementation
ITCC Positive data | (I. S. Dhillon, Mallela, and D. S. Modha, 2003) | Non-diagonal C++ implementation
SpecCo | Positive data | (Labiod and Nadif, 2011) Diagonal Our python implementation
x-Sim Positive data | (Bisson and Hussain, 2008) Non-diagonal MATLAB implementation of the authors
FNMTF | Positive data | (Wang et al., 2011) Non-diagonal MATLAB implementation of the authors
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Graph-based Co-clustering

aph Modularity
dularity for Co-clustering
Experiments

Datasets Characteristics
#Documents _ #Words _ #Clusters _ Sparsity (%) _ Balance ¢ Evaluation measure : Accuracy (Acc) and
CLASSIC4 7095 5896 4 99.41 0.323 Normalized mutual information (NMI) (Strehl and
NG20 19949 43586 20 99.99 0.991 Ghosh, 2003)
SPORTS 8580 14870 7 99.99 0.036
REVIEWS 4069 18483 5 99.99 0.098 ¢ Data Types : binary, contingency and TF-IDF
Method | Data Type References Co-clustering | Type of i itation
Spec Positive data | (I. Dhillon, 2001) Diagonal Scickit Learn
Block Binary (Li, 2005) Diagonal Our python implementation
ITCC Positive data | (I. S. Dhillon, Mallela, and D. S. Modha, 2003) | Non-diagonal C++ implementation
SpecCo | Positive data | (Labiod and Nadif, 2011) Diagonal Our python implementation
x-Sim Positive data | (Bisson and Hussain, 2008) Non-diagonal MATLAB implementation of the authors
FNMTF | Positive data | (Wang et al., 2011) Non-diagonal MATLAB implementation of the authors
Binary Contingency TF-IDF

datasets  per. || Spec ITCC Block SpecCo x-Sim FNMTF CoClus ||Spec ITCC specco x-sm FNMTF CoClus || Spec ITCC SpecCo x-Sim FNMTF CoClus
CLASSIC4 Acc ||0.34 0.65 0.52 0.45 0.31  0.50 0.90 0.53 0.87 0.58 0.31 0.56 0.90 0.44 060 0.45 035 0.76 0.88
NMI||0.14 0.51 0.16 0.02 0.15 0.30 0.72 0.45 0.67 0.48 0.15 0.30 0.73 0.02 055 0.009 0.13 0.58 0.70
NG20 Acc |[0.14 0.43 020 0.19 0.26 0.13 0.40 0.05 0.45 0.30 0.30 0.09 0.37 0.19 041 0.15 029 0.40 0.37
NMI{|0.29 0.55 0.22 0.42 0.33 0.03 0.55 0.02 0.52 0.49 0.37 0.07 0.52 0.32 0.44 0.38 0.41  0.40 0.52
SPORTS  Acc |[0.56 0.45 0.47 0.59 0.57 0.28 0.70 0.44 0.56 0.68 0.53 0.36 0.75 045 0.54 0.61 0.67 057 0.68
NMI||0.47 0.49 0.38 0.45 0.48 0.15 0.54 0.38 0.58 0.59 0.48 0.19 0.62 0.43 0.58 0.45 0.55 0.54 0.59
REVIEWS Acc (|0.56 0.58 0.53 0.59 0.46 0.34 0.65 0.50 0.71 045 0.41 0.38 0.72 0.35 0.63 0.46 0.44 043 0.65
NMI||0.36 0.46 0.42 0.39 0.31 0.18 0.54 0.40 0.57 0.34 0.23 0.17 0.58 0.03 0.51 0.35 028 0.27 0.52

* Results obtained after running each algorithm 100 times with random initialization

* We retained the solution optimizing the associated criterion (maximizing the modularity for CoClus)
* Superiority of Coclus in almost all situations

* Robustness w.r.t the type of data (binary tables, contingency tables and TF-IDF weighted tables)
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Experiments

Assessing the Number of Co-clusters

* Most previous co-clustering algorithms require the number of co-clusters
as an input parameter

+ The modularity measure can be used to predict the right number of
co-clusters
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Assessing the Number of Co-clusters

D 200 40 (00X %00 10000 100 14000 g 04000000 100
T T T

T T

418 lx
B
R

Modularity

a5 6 1 8
Number of lusters

Original matrix (document x term) Reorganized matrix (after Co-clustering) Number of Co-clusters

Most previous co-clustering algorithms require the number of co-clusters
as an input parameter

The modularity measure can be used to predict the right number of
co-clusters

Run Coclus algorithm with different values of g (number of co-clusters)
For each number of co-cluster the modularity is computed

Retain the number of co-clusters for which the modularity measure
reaches it's maximum value
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Experiments

Assessing the right number of co-clusters

Modularity

6 7 8

# Co-clusters

(a) CSTR (real : 4, predicted : 4)

032 \/,//\ Ll

Modularity

# Co-clusters

(d) Reviews (real : 5, predicted : 5)

Modularity

# Co-clusters

(b) CL4 (real : 4, predicted : 4)

Modularity

# Co-clusters

(e) CL3 (real : 3, predicted : 3,6,8)

Modularity

# Co-clusters

(C) SPORTS (real : 7, predicted : 7)

032

Modularity

2 4 6 8 10 12 14 16 18 20 22
# Co-clusters

(f) NG20 (real : 20, predicted : 10)
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Motivation
- Investigate probabilistic mixture models allowing to make precise
assumptions about the anatomy of diagonal co-clusters

« Flexibility
- Give rise to both soft and hard co-clustering
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n Latent Block Model (SPLBM)
Model-based Co-clustering S d Co-clustering Algorithm
H SPLBA o-clustering Algorithm

Experiments

Motivation

- Investigate probabilistic mixture models allowing to make precise
assumptions about the anatomy of diagonal co-clusters

« Flexibility
- Give rise to both soft and hard co-clustering
Contribution

- We present a sparse generative mixture model for co-clustering
text data

- This model is based on the Poisson distribution, which arises
naturally for contingency tables, such as document-term matrices

- The proposed model takes into account the sparsity in its
formulation

25/66



del (SPLBM)

Model-based Co-clustering

Model-based clustering - Finite mixture model

The matrix is assumed to be an i.i.d sample X = (xi, ..., x,) where
x; = (xi1,...xq) € R? is generated from a probability density function (pdf) with

density :
8
f(xi79) = Zﬂ-kfk(xhak)v m
k=1 s
The likelihood of data X can be written as : e

FX,0) = T3 mefi (v o),

i k=1

where
* fi(., i) is the density of an observation x; from the k-th component
* ays are the corresponding class parameters
+ mx represents the proportions of each cluster.
+ Each component k of the mixture represents a cluster.

26/66



Model-based Co-clustering

For each block &/, the values x;; are generated O, ()
according to a probability density function (pdf)
f(xij; oe) (Govaert and Nadif, 2003) o °

Likelihood function

Denoting by Z and W the sets of all possible partitions, the likelihood function of a data
matrix X of size n x d can be written

F68)= % TIm*TTe TT £ ane)®s,
(Z,W)eZxW ik jl ik,
Where
° 0 =(m,p,a),is the parameters of the latent block model.
* 7 and p are the mixing proportions.
c a=(apk=1,...g,£=1,...,m) is the matrix of parameters of each block (k, £).
* g (resp. m) represents the number of row (resp. column) clusters.
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Latent Block Model (SPLBM)

S|
Model-based Co-clustering Si
H
Ex|

Latent block model (LBM)

Algorithm 2: Generative Process of LBM
Input : n,d, g, m, 0= (mp )
Output: data matrix X, vector of row labellings z = (z1, ..., z.) and vector of
column labellings w = (w1, ..., wg)
fori=1tondo
- Generate the row label z; according to the multinomial distribution
= (m,..., )

end
orj=1toddo
- Generate the column label w; according to the multinomial distribution

p=(p1,-spg)

-

end
fori=1tondo
forj=1toddo
| - Generate a value x; according to the distribution f(.; a;,w,)
end
end
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* For each diagonal block kk the values x;; are distributed according to the Poisson distribution

‘P (Xij) where the parameter \;; takes the following form :
Nj = X1.Xj D ZikWikVik-
k

* For each off-diagonal block k¢ with k # £ the values x;; are distributed according to the Poisson
distribution P (\;) where the parameter \; takes the following form :

Nij = XX D ZwWie-
k, L#k

* Assuming V¢ + k e =y leads to suppose that all blocks outside the diagonal share the
same parameter.

30/66
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Co-clustering Algorithm

Intuition

* For each diagonal block kk the values x;; are distributed according to the Poisson distribution
‘P (Xij) where the parameter \;; takes the following form :

Nj = X1.Xj D ZikWikVik-
k
* For each off-diagonal block k¢ with k # £ the values x;; are distributed according to the Poisson
distribution P (\;) where the parameter \; takes the following form :

Nij = XX D ZwWie-
k, L#k

* Assuming V¢ + k e =y leads to suppose that all blocks outside the diagonal share the
same parameter.

Likelihood function
f(X;0) =

(2 W)EEXW ik
x TTC Gz )™ < TT (f (s cune) ) %58
ik Lok, bk
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i "k e TRk (o x )i\ "
(X, 2,W;0) = =* [1p/ x (—
Bl Jsk ST x;!

50 (x5, jy ) )Zikw/l
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Algorithm

Sparse Poisson Latent Block Model (SPLBM)

—Xi % j"fkk(xlx iy )\ Kk
x = e WY
ij,k

F(X,2,W;0) =[] m* [1p*
ik ok

et (xlm)‘v e
x !
ik, 0k Xij:

Complete Data Log-likelihood

8
Lc(Z,W,0) =logf(X,Z,W;0) = > Lf
k=1

Vi

N
Ec—zklogﬂk+wklogpk+xkk log(’y *kak(’)/kk 'y)+g(log('y)—'yN)

w
where xuc = X TikWikXijs Tk = X Zik and w = X Wik, XZ i ziexi, and x); = X Witk
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Sparse Poisson Latent Block Model (SPLBM)

Model-based Co-clustering
Algorithm

Sparse Poisson Latent Block Model (SPLBM)

X X Y, i \ ZikWjk
¢RI (o x jrye ) )qk jk

J(,j'

FX,Z,W;0) =T m*[1p  x (
ik Jrk ij,k

@ b (x[,x_j’y)'t"f ikvje
x = eV
ij k, €+k

x,]'

Complete Data Log-likelihood

8
Lc(Z,W,0) =logf(X,Z,W;0) = > Lf
k=1

Vi

N
L =z log i +w.i log pi + log(,y — 1% (= )+g(10g(7)*vN)

w
where xuc = X TikWikXijs Tk = X Zik and w = X Wik, XZ i ziexi, and x); = X Witk

(a) Tradmonal LBM - 64 parameters (b) Sparse PLBM - 9 parameters
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Sparse Poisson
Latent Block

Model (SPLBM)

¥
——
Classification
Maximum Maximum Likelihood
Likelihood Ap- Approach (ML)

proach (CML)
S —

A4
( ) Soft Variant
Hard Variant Stochastic Variant (Ailem, Role, and
(Ailem, Role, and [ ----- (Ailem, Role, and  [* -~ Nadif, 2017a)
Nadif, 2017b) Nadif, 2017a) g
L J

Figure: SPLBM-based co-clustering algorithms

M. Ailem, F. Role, and M. Nadif (2017b). “Sparse Poisson Latent Block Model for Document
Clustering”. In: IEEE TKDE journal 29.7, p. 1563.

M. Ailem, F. Role, and M. Nadif (2017a). “Model-based co-clustering for the effective handling
of sparse data”. In: Pattern Recognition 72, pp. 108-122.
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Soft SPLBM-based Co-clustering Algorithm

- Estimate the model’s parameters 6, Z and W

+ We rely on the Expectation-Maximization (EM) algorithm that consists in
maximizing the expectation of the complete data likelihood Lc(Z, W, 8)
given by :

E(LC(Z,W,0)|0(’)7X) Sz logme+ 3wl log pe
ik

Jk

+ o> éi(j? (i log () = xi.x jyix)
ik

Y @) (log(y) —xix ),

i,j,k, 0k

where 2 =B = 11X,00), e = E(w) = 11X,00),
&) = E(e,k,g = 11X,07) = E(zuwye = 1X,0) and &) = E(ziwy = 1]X,00).
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Soft SPLBM-based Co-clustering Algorithm

- Estimate the model’s parameters 6, Z and W

+ We rely on the Expectation-Maximization (EM) algorithm that consists in
maximizing the expectation of the complete data likelihood Lc(Z, W, 8)
given by :

E (LC(Z, W, 9)|9"’,x)

Z Zl.(k') log mi + Z vT/j(,:) log p«

ik ik

+ Yo es) (rylog(me) = XX )
igok

Y galog(v) —xiam),
i,j,k, Lk
where z§ = E(zi = 11X, 0)), e = E(w() = 1]X,0),
&%), = E(eige = 11X,0) = E(ziwye = 1X,0) and &) = E(zawi = 11X, 0).
The coupling of Z and W in e makes the direct appllcation of the EM
algorithm difficult, due to the determination of é;; and ey
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Model Fitting Using the Variational EM Algorithm

Solution : Use a mean-field variational EM (VEM) algorithm for
inferences

The VEM algorithm is equivalent to maximizing the following soft
co-clustering criteria:

Fc(Z,W,0) = Lc(Z,W,0)+H(Z)+ H(W),

where H(Z) = - >« 2 logZi and H(W) = - i kw,k logw Wi are
respectlvely the entropy of the missing variables Z and W
Lc(Z,W, 0) is the soft complete data likelihood defined as follows :

Lc(z, W, 6) = Zz,k log 7y + Z Wik log pr + Z Tk Wik Xij log( )
ik Jik i,k

Zxk.XYZW( +7y ZXJ%.X.VZ +N(log(vy) —N)
k k

The SPLBvem algorithm consists of the expectation and maximization
steps
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Experiments

Model Fitting Using the Variational EM Algorithm

+ Computation of 9, for all k. It is easy to show that Vi the Ju’s
maximizing Fc can be computed separately for each k.

- Computation of 4 maximizing Fc. It is easy to show that ¥ is given by:

5= N - ka%kw
N2 = 3 xlxy

- Computation of 7, g for all k. Under the constraints Y, mc = Y px = 1,
it is easy to show that each 7 and pr maximizing Fc are respectively

given by m = Z& and p; = .
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Model Fitting Using the Variational EM Algorithm

* The E-step consists in computing the posterior probabilities Zjx and wij
maximizing Fc

* Plugging the estimation of v’s and « (explicitly in some terms of F¢) we obtain

Fo(Z,W,0) = > Zilog fip + > Wik log p + Y ZWikXij log( )
ik Jk ik
+  N(log(¥) - 1) - > ZlogZix — Y. Wit log W
ik ik

* Taking x}} = ¥; Wixj and xf; = ¥, Zax; it is easy to show that under the
constraints:
© ke =1
s Wik =1
Vkk
Zik o< Tk exp(x log —
-

Vikk
Wik o< pk eXP(XkJ log —
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The spLBvem Algorithm

Algorithm 3: SPLBvem
Input: X, ¢
Initialization : Z, W, 7, pi, v, v
repeat
X = X Wik
)

step 1. % o mexp(xy) log 7

W VA
_ “\%k~ v = N-Zk X
XZXV,\(' ’ Nz—zkxkz xVZ

slep 2. Tk = %k, Yik =

= Z kay
slep 3. Wik o< p exp(x,\, log W
Z-W-kx%- P N-Tpx
step 4. o, = “k ==L ok = %
P 4. pr= =, Yk o i T ey, 2

until Convergence;
Output: Z, W, m, pr, ik, ¥
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The hard SPLBM-based co-clustering algorithm
Intuition

* It consists in maximizing the classification likelihood instead of its expectation
* This is done by incorporating a classification step (C-step) between the E and M steps of the SPLBvem
Algorithm 4: SPLBcem

Input: X, ¢
Initialization : Z, W, 74, pp, Yk v
repeat
o= ZJ WikXij _
,y
,-‘;CV log %)

ZW
Gk N=k Ve
LW N2y L Z W

o= STy

e Z ik
step 3. Wik o< pk exp(.rkj log T)
step 3’

< Wjg = arg max W

- . VAL
4 _ YV EJ _ N*Ek*’%}{
step4. pp = 7 Yk = ’Y—W
NT=Zpe k
until Convergence;

Output: Z, W, mp, pgs Yeks ¥
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The hard SPLBM-based co-clustering algorithm
Intuition

* It consists in maximizing the classification likelihood instead of its expectation
* This is done by incorporating a classification step (C-step) between the E and M steps of the SPLBvem
Algorithm 4: SPLBcem

Input: X, ¢
Initialization : Z, W, 74, pp, Yk v
repeat
o= ZJ WikXij _
,y
,-‘;CV log %)

ZW
Gk N=k Ve
LW N2y L Z W

o= STy

e Z ik
step 3. Wik o< pk exp(.rkj log T)
step 3’

< Wjg = arg max W

step 4. p; = Lk

=

N

VAL
>
TN

N-=%k T
until Convergence;
Output: Z, W, mp, pgs Yeks ¥

Advantages

* SPLBcem is considerably faster and scalable than SPLBvem
* It allows us to avoid numerical difficulties, related to the computation of the posterior probabilities Z; and ;;
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The stochastic SPLBM-based co-clustering algorithm (SPLBsem)

SPLBvem and SPLBcem are very dependant on their starting points!
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The stochastic SPLBM-based co-clustering algorithm (SPLBsem)

Algorithm 5: SPLBsem

Input: X,
Initialization : Z, W, 7y, o, ik, ¥
repeat
W -
Xip = Xj Wikxij
step 1. Zj o eXP(x log wf;k )
step 1°. simulation of z; according to M (%, . . . ,T,y)
w W AL
N=3 2
step 2. 7 = sy = e A
N2zl W
X = %y
step 3. Wy, o< p; exp(xk/ log ’W‘k )
step 3. simulation of w; accordlng to M(Wj1, ..., W)

step 4. p; = 4 ) Yik =

until Convergence;
Output : Z, W, 7, pr, ik ¥
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The stochastic SPLBM-based co-clustering algorithm (SPLBsem)

Algorithm 5: SPLBsem

Input: X,
Initialization : Z, W, 7y, pr, vk, v
repeat
W ~
Xip = Xj Wikij
step 1. Zj o< 7y exp()c log ’Y"" )
step 1°. simulation of z; accordlng to M(
X
step 2. 7 = = Kk - Rk
~ S V=S o
X = Zi%y
“ka
step 3. Wy o< p cxp(xk log )
step 3’. simulation of w; accordlng to M (W1, ..., W)
w =) Wik N-3x
Step4-Pk:Tky"/kk:TWj: , > ’;‘kW
ok NT=Zpe x

until Convergence;
Output : Z, W, 7, pr, ik ¥

Advantages : It does not stop at the first stationary point of the likelihood function, which makes it
possible to avoid bad local maxima due to the initial position
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The stochastic SPLBM-based co-clustering algorithm (SPLBsem)

Algorithm 5: SPLBsem

Input: X,
Initialization : Z, W, 7, o, ik, ¥
repeat

w ~
Xip = Xj Wikij
step 1. Zj o< 7y exp()c log ’Y"" )
step 1°. simulation of z; accordlng to M(

step 2. 7 =

= =
LN V2=l W

ij = i Zikxij

step 3. Wy o< p cxp(xk log ’Y"“ )

step 3. simulation of w; accordlng to M (W1, ..., Wig)
< i Wi N-3p x
w ) VJkTk k
Step4-Pk:Tky"/kk:TWj: ) > ’;‘kW
ok NT=Zpe x

until Convergence;
Output : Z, W, 7, pr, ik ¥

Advantages : It does not stop at the first stationary point of the likelihood function, which makes it
possible to avoid bad local maxima due to the initial position

Weakness : sSPLBsem does not share the convergence properties of SPLBvem and SPLBcem and
may require a large number of iterations to reach a steady state
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The stochastic SPLBM-based co-clustering algorithm (SPLBsem)

Algorithm 5: SPLBsem

Input: X,
Initialization : Z, W, 7, o, ik, ¥
repeat

W S
Xip = Xj Wikij

step 1.7 o< m; exp(x,.‘;{v log ’Y"" )

step 2. 7 =
ij = XiZixij
“ka
step 3. Wy o< p cxp(xk log )
step 3’. simulation of w; accordlng to M (W1, ..., W)
Vi Zj Wik N-%px
stepd. p = £, v = JWIZ , > ’;‘kW
ok NT=Zpe x

until Convergence;
Output : Z, W, 7, pr, ik ¥

Advantages : It does not stop at the first stationary point of the likelihood function, which makes it
possible to avoid bad local maxima due to the initial position
Weakness : sSPLBsem does not share the convergence properties of SPLBvem and SPLBcem and
may require a large number of iterations to reach a steady state
* Solution = initialize spPLBvem with the parameters resulting from SPLBsem = SPLBsvem 41/66



Model-based Co-clustering

Outline

e Model-based Co-clustering

@ Experiments

42/66



Model-based Co-clustering

Experiments

Global Performance Comparison - Document Clustering

Datasets Characteristics o . .
#Documents #Words #Clusters Sparsity (%) Balance Data : contingency tables

SPORTS 8580 14870 7 99.14 0.036 * Evaluation measures : Acc,

TEee e D3 R M MiGriadGhon e

Reuters40 8203 18914 40 99.75 0.003 ARI (Rand, 1971)

Comparative study
* Proposed diagonal co-clustering : Coclus, SPLBcem, SPLBvem, SPLBsem, SPLBsvem

* Non-diagonal co-clustering : ITCC (I. S. Dhillon, Mallela, and D. S. Modha, 2003), PLBvem (Govaert and

Nadif, 2010) and LDA (Blei, Ng, and Jordan, 2003)
* Clustering : Spherical kmeans (l. Dhillon and D. Modha, 2001)
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Model-based Co-clustering

Experiments

Global Performance Comparison - Document Clustering

Datasets Characteristics R N
#Documents #Words #Clusters Sparsity (%) Balance Data : contingency tables
SPORTS 8580 14870 7 99.14 0.036 * Evaluation measures : Acc,
zDhTZ KiB gg% 2%;; 360 ggi‘: ggig NMI (Strehl and Ghosh, 2003) and
fahoo_| . .
Reuters40 8203 18914 40 99.75 0.003 ARI (Rand, 1971)

Comparative study
* Proposed diagonal co-clustering : Coclus, SPLBcem, SPLBvem, SPLBsem, SPLBsvem
* Non-diagonal co-clustering : ITCC (I. S. Dhillon, Mallela, and D. S. Modha, 2003), PLBvem (Govaert and
Nadif, 2010) and LDA (Blei, Ng, and Jordan, 2003)
* Clustering : Spherical kmeans (l. Dhillon and D. Modha, 2001)

datasets per. Skmeans ITCC__LDA PLBvem CoClus SPLBcem SPLBvem SPLBsem SPLBsvem
SPORTS Acc 0.49 053 053 047 0.75 0.85 0.85 0.86 0.87
NMI 0.50 060 0.54 064 0.62 0.69 0.70 0.71 0.67
ARI 0.30 0.44 0.33 0.49 0.55 0.76 0.75 0.77 0.69
TDT2 Acc 057 059 060 059 0387 0.83 0.84 0.84 0.85
NMI 0.76 078 0.73 0.76 0.84 0.81 0.82 0.84 0.84
ARI 0.46 0.52 049 0.51 0.85 0.81 0.80 0.85 0.85
Yahoo_KiB | Acc 0.57 0.617 0. K X B K K K
NMI 0.64 0.58 0.58 0.62 0.54 0.66 0.69 0.72 0.75
ARI 0.39 040 0.37 0.38 0.31 0.60 0.72 0.76 0.79
REUTERS40| Acc 0.26 027 047 025 0.61 0.73 0.74 0.73 0.77
NMI 0.50 0.52 051 052 0.54 0.57 0.58 0.57 0.62
ARI 0.11 0.18 0.42 0.15 0.51 0.71 0.756 0.73 0.76

* Diagonal co-clustering are better in almost all situations
* In particular the SPLBsvem which leverages the benefits of both soft and stochastic variants
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Global Performance Comparison - Document Clustering

datasets per. Skmeans ITCC__LDA PLBvem CoCIUS cem vem sem svem

[ SPORTS Acc 0.49 0.53 053 047 0.75 0.85 0.85 0.86 0.81
MI 0.50 0.60 0.54 0.64 0.62 0.69 0.70 0.71 0.67

ARI 0.30 044 0.33 0.49 0.55 0.76 0.75 0.77 0.69

TDTZ2 Acc 057 059 0.60 059 0.87 0.83 0.84 0.84 0.85
NMI 0.76 0.78 0.73 0.76 0.84 0.81 0.82 0.84 0.84

ARI 0.46 0.52 0.49 0.51 0.85 0.81 0.80 0.85 0.85

[ Yahoo_KTB [ Acc 057 0.67T 0.62 058 0.60 0.79 0.84 0.86 0.88
NMI 0.64 0.58 0.58 0.62 0.54 0.66 0.69 0.72 0.75

ARI 0.39 040 0.37 0.38 0.31 0.60 0.72 0.76 0.79

REUTERS40| Acc 0. . R . . . . A A

NMI 0.50 052 051 052 0.54 0.57 0.58 0.57 0.62

ARI 0.11 0.18 042 0.15 0.51 0.71 0.75 0.73 0.76

* Diagonal co-clustering are better in almost all situations
* In particular the SPLBsvem which leverages the benefits of both soft and stochastic variants

> ;;{% > » CLASSIC4
r e/t oo CLASSIC3
< < CSTR
/ » > CLASSIC4 e—e RCV40
y oo CLASSIC3 ~— TDT2
Vik < < CSTR ol +— RCV30
e RCV40 o— K1B
[ «—— TDT2 »~— SPORTS
~ +—a RCV30
e K1B
»—~ SPORTS
ER— T % R

I s 10
Iterations. Iterations

Figure: Behaviour of the ~y’s (left) and «y (right) parameters at each iteration.
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* The proposed diagonal approaches deal well with unbalanced datasets
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Experiments

* The proposed diagonal approaches deal well with unbalanced datasets
* The diagonal approaches reach good performance in both NMI and ARI on
unbalanced datasets
* ARI, unlike NMI, is more sensitive to cluster merging/splitting
i

TOT 07 03 09 05 06 07 08 09 10 "85 0T 07 o3 07 05 06 o7 0% 09 10 85 07 0z o3 o7 05 05 o7 v 09 10 05 0T 07 03 07 05 06 07 0F 05 1o
|

(a) SPLBvem (b) SPLBsem (c) SPLBsvem (d) SPLBcem
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* The proposed diagonal approaches deal well with unbalanced datasets

* The diagonal approaches reach good performance in both NMI and ARI on
unbalanced datasets

* ARI, unlike NMI, is more sensitive to cluster merging/splitting

orf| % Cumenes . ol % comenes LN o] 3 e o] 5 e .
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zodls 2 Zo & B zod| B zod|s 2
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(a) SPLBvem (b) SPLBsem (c) SPLBsvem (d) SPLBcem

* con B * g o O
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07l < Sronrs - ol 3 o7l 5 Srow
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(e) PLBvem (f) DA (g) 1TCC
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Experiments

* The proposed diagonal approaches deal well with unbalanced datasets

* The diagonal approaches reach good performance in both NMI and ARI on
unbalanced datasets

* ARI, unlike NMI, is more sensitive to cluster merging/splitting

ol SRae e e I R :
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(a) SPLBvem (b) SPLBsem (c) SPLBsvem (d) SPLBcem
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(e) PLBvem (f) oA (g) 1TCC (h) CoClus
* Comparison of the standard deviation in cluster size (SDCS) of clusters obtained by each method
[ 2\0.5
SDCS = (o =¢_, (k- )?)
* The SDCS values of the clusters obtained with SPLBcem are the closest to the real SDCS of the datasets

Co-clustering
Non-diagonal Diagonal Real SDCS
Skmeans ITCC LDA PLBcem SPLBcem
REUTERS40 112.638 144.195 362.102 201.162 642.839 654.556
REUTERS30 161.797 238.353 414.568 261.291 752.129 747.879

Ki1B 154.3684 198.828 261.765 189.849 336.555 513.303
TDT2 154.143 216.152 189.609 235.698 516.685 481.830
SPORTS 760.099 346.066 482.714 393.510 1359.321 1253.011

Data Clustering
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Assessing the Quality of Term Clusters

* Lack of benchmark datasets providing the true cluster labels of both the objects
and attributes.

* Most studies evaluate the co-clustering algorithms based on the object
(document) clustering only.

* We propose two different approaches to evaluate term clusters :

+ Visual assessment of term cluster coherence
- Quantitative evaluation of term cluster quality

* We use a biomedical document-term matrix, namely the PUBMEDS5 dataset.

* PUBMEDS5 dataset is a document-term matrix of size 12648 x 19518 that contains
documents about 5 different diseases.

Disease Number of documents
Migraine 3703
Age-related Macular Degeneration 3283
Otitis 2596
Kidney Calculi 1549
Hay Fever 1517
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Model-based Co-clustering

Experiments

Visual assessment of term cluster coherence

Assess if the top terms present in a co-cluster are densely interconnected
and form a semantically coherent set. S

Principle

@ Co-clustering with SPLBcem on the
PUBMEDS5 dataset into g = 5 blocks

® For each diagonal block ¢, we extract the
corresponding matrix X,

® Build a term-term cosine similarity matrix
S. = X' xme™ for each diagonal block

O Place the n = 8 top terms of ¢ in a graph

® Connect each top word their £ = 5 most
similar neighbors according to the cosine
similarity recorded in S,

Gass 049
immunotherapi

(a) Cluster "Hay fever". 46/66
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(b) Cluster "Migraine".

" (e) Cluster "Kidney Calculi".
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d Algorithm
Experiments

Quantitative evaluation of term cluster quality

Principle

+ Use the Point-wise Mutual Information (PMI) to allerg
measure the degree of association between / \
word pairs 0.5 .94

PMI(ii, ;) = log 200241 e

p(wi)p(wj) symptom 0.49 rhiniti

Use the whole English WIKIPEDIA corpus that
consists of approximately 4 millions of 021 037 0.50 0.59

documents and 2 billions of words ’ ’

N PMI(w;,w;)
The NPMI(w;, w;) = ——— -~~~ Tog(p(wry)) ranges \ /\ /
between -1 and +1, the higher the NPMI, the

greater the correlation between words w; and
wj

PMI can be estimated using an external corpus \ 0.51 0.41 /

(a) NPMI score: 0.48.
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Experlmems

migrain

/\
-

petient

=

tudi

b) NPMI score 0.34.

oftiti
media

e

middl——— ——children
NPMI score 0.33.

stone

\ 0.30 0.40 /
0.40 0.61 0.40 0.56

calcium———— 0. ————urinari

(c) NPMI score: 0.47.

macular

(e) NPMI score: 0.41.
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Model-based Co-clustering

Experlmems

Concluding remarks

Diagonal co-clustering algorithm (Coclus) by direct maximization of
graph modularity

Coclus is able to effectively co-cluster different kind of positive
document-term matrices

Sparse Poisson Latent Block Model (SPLBM)

SPLBM is also very parsimonious

SPLBM has been designed from the ground up to deal with data sparsity
problems
From this model, three co-clustering algorithms have been inferred
+ A hard variant SPLBcem
- A soft variant SPLBvem
+ A stochastic variant SPLBsem
Extensive numerical experiments show that
+ Seeking diagonal structure is more effective when dealing with high
dimensional sparse data
+ Reduce the computational time
- Robust against highly unbalanced datasets
+ Discover pure and well separated document/word clusters
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Context

* Exponential growth of biomedical text data (PUBMED, GO, ...)

* There is a genuine need for text mining techniques to analyse and interpret these large
amounts of information

* Help researchers to characterize relationships between biomedical entities (genes, diseases,
...) quickly and efficiently
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Contributions
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* Benefits of co-clustering in biomedical text mining application

M. Ailem et al. (2016). “Unsupervised text mining for assessing and augmenting GWAS results”.
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* Exponential growth of biomedical text data (PUBMED, GO, ...)

* There is a genuine need for text mining techniques to analyse and interpret these large
amounts of information

* Help researchers to characterize relationships between biomedical entities (genes, diseases,
...) quickly and efficiently

Motivations

* Genome-wide association studies (GWAS) : examination of many genetic variants (SNPs) in
different individuals to study their correlations with phenotypic traits

* GWAS allow to identify groups of genes associated with a common phenotype
* GWAS do not provide information about associations in these gene groups

Contributions

* A biomedical text mining framework (Ailem et al., 2016) to augment the results of GWAS
* Benefits of co-clustering in biomedical text mining application

* lllustration on GWAS of asthma disease (Moffatt et al., 2010), which reported 10 genes
associated with asthma

Assess the strength of association between these genes and infer new candidate genes likely
associated with asthma

M. Ailem et al. (2016). “Unsupervised text mining for assessing and augmenting GWAS results”.
In: Journal of biomedical informatics 60, pp. 252—259. 52/66
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@ Input : set of 10 asthma genes (G) and 100 sets of random genes {R;, ..., Ry} selected

randomly from the human genome

@ Assess the strength of association between asthma-associated genes

* Use the PUBMED database to create a gene x rerm matrix for each set

* Compare the cosine similarity between asthma gene vectors and random gene vectors
@® Assess the purity of asthma-associated genes

* Use the PUBMED database to create a gene x rerm matrix for each set (G + R;) (100

matrices)

* Clustering (Zhao and K, 2002) and Co-clustering with Coclus and SPLBcem

@ New candidate genes for asthma
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+ The mean cosine similarities of asthma gene vectors is greater than
would be expected by chance (empirical p-value < 1%)

+ Application of clustering and co-clustering to 100 sets of 20 genes that
each included the 10 asthma genes plus 10 random genes, returned an
average purity of 89%

+ 20 Top terms of asthma genes co-cluster

Smoking diabetes th2 environmental
immune-mediated chronic enterotoxin | proinflammatory
child microenvironment | cytokine autoimmune
immunohistochemistry | childhood influenza asthma

drug inflammation crohn necrosis
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with the group of asthma genes (G)

+ Study the Top 20 genes
+ Use the biomedical literature and experts to validate the results
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Candidate genes for asthma

+ Moreover, 104 random genes were grouped with the 10 asthma
associated-genes and, therefore, might be new candidates for asthma

+ We ranked these candidate genes according to their cosine similarity
with the group of asthma genes (G)

+ Study the Top 20 genes
+ Use the biomedical literature and experts to validate the results

IL1RL1 RAG1 CLEC1B | IL23R
STAT6 EFNA3 S1PR5 TGFBR1
FCMR CXCLS8/IL8 | CHRNB4 | NFKB1
TNFRSF1A | TMED1 NOD2 TSLP
NLRP10 POMP SPINK1 PTGES

* Reported associated with asthma or allergy
- Reported associated with auto-immune diseases
+ Encode proteins that are involved in immune-related mechanisms
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Main contributions

- Three main contributions

@ Graph-based Diagonal co-clustering approach
® Model-based Diagonal co-clustering approach
® Using Co-clustering for Biomedical Text Mining

- Assessing the right number of co-clusters

- Methods for assessing term clusters

- Soft, hard and stochastic assignments

- Extensive experiments on real world text datasets

- Availability : Coclust python module
(https://pypi.python.org/pypi/coclust)

59/66



Conclusion and Perspectives

Toward Semantic (co)-clustering

Motivation

* Existing (co)-clustering methods ignore the semantic relationships between
words, which may result in a significant loss of semantics since documents that
are about the same topic may not necessarily use exactly the same vocabulary.

Contribution

* We propose a new (co)-clustering models which goes beyond the bag of word
representation so as to preserve more semantics.

* We achieve our objective by successfully integrating word2vec into a
(co)-clustering framework.

* The proposed models substantially outperforms existing (co)-clustering models in
terms of document clustering, cluster interpretability as well as document/word
embedding.

M. Ailem, A. Salah, and M. Nadif (2017). “Non-negative Matrix Factorization Meets Word
Embedding”. In: SIGIR. ACM, pp. 1081-1084.

A. Salah, M. Ailem, and M. Nadif (2017). “A Way to Boost Semi-NMF for Document Clustering”.
In: CIKM. ACM, pp. 2275-2278.

A. Salah, M. Ailem, and M. Nadif (2018). “Word Co-occurrence Regularized Non-Negative
MatrixTri-Factorization for Text Data Co-clustering”. In: AAAI'2018.
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Perspectives

- Investigate an overlapping version of the Coclus algorithm
- Study the theoretical link between graph-based and
model-based approaches

- Assessing the number of (co-)clusters for model-based
approaches using information criteria such as BIC, AIC, ICL

- Investigate Bayesian non-parametric formulations of
SPLBM, which would allows us to overcome the problem of
the number of clusters as well as handle evolving data
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Thank you for your attention!
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